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Abstract. A Monte Carlo method for quantum spin-1 systems is presented. The internal 
energy and longitudinal correlation functions are computed in the antiferromagnetic region. 
Some exponents and the phase diagram are derived with good accuracy. 

1. Introduction 

Recently the one-dimensional anisotropic Heisenberg model with spin 1 has attracted 
much attention, both theoretical and experimental. In particular, Haldane (1983a, b) 
proposed a conjecture that this model (more generally, systems with integral spin) has 
a quite different phase diagram compared with the spin-’ case. 

Stimulated by this conjecture, many numerical studies have been done. Botet and 
Jullien (1983, 1984) and Botet et a1 (1984) solved finite size (N=2-12)  systems 
numerically. Their analysis by the finite-size scaling hypothesis seems, they claim, to 
support Haldane’s conjecture. The work of Bonner and Muller (1984) shows, however, 
a doubt about the procedure of finite size scaling; even for the spin-; (exactly solvable) 
case it gives a wrong answer. Other numerical works (Glans and Schneider 1984, 
S6lyom and Ziman 1984) give slightly different phase diagrams. 

One of the authors (KS) solved (Sogo 1984), on the other hand, the completely 
integrable X X Z  model with arbitrary spin S, and found that there is no qualitative 
difference between the cases of integral and half-integral spins in the excitation 
spectrum. If the universality class of this X X Z  model is large enough to cover the 
ordinary Heisenberg model, Haldane’s conjecture is to be negated. 

In such a way, the issue whether the excitation is massive or massless has not been 
settled yet even for the isotropic case. In the present paper we consider this problem 
by a Monte Carlo (MC) method. 

The MC simulations enable us to treat large systems ( N  = 40 in this work) easily. 
The MC procedure for quantum systems was first proposed by Suzuki in 1976. 
Recently the procedure of Hirsch et a1 (1982) was applied and extended by Nakamura 
et a1 (1985) to study the anisotropic Heisenberg model with spin f (including the 
dimerised case). We found that the simulations reproduce the exact theory with good 
accuracy. 

In P 2, the MC procedure used in Nakamura et al (1985) is generalised to higher 
spim. The results of simulations are summarised in 0 3, and they show that Haldane’s 
conjecture does not hold in the spin-1 case. Section 4 is devoted to conclusions and 
discussions. 
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2. Monte Carlo procedure 

The Hamiltonian considered in this paper is 
N 

H = [ - J (  ScS:+I + S:SY,+1) + J3S',S",l+ D(S',)'], (1) 
n = l  

where the S; (a = x, y ,  z )  are spin operators of magnitude 1. Although the sign of the 
first term is changed for later convenience, it does not affect the physical arguments, 
because the unitary transformation U = exp(i7r E o d d  Si )  changes this sign. 

The statistical mechanical object we consider is the canonical ensemble, or the 
partition function 

2 = Tr(e-PH). (2) 

Although our case of spin 1 cannot be interpreted as a fermion problem like the spin-; 
case (Hirsch er a1 1982), we can expect that the checkerboard arrangement still works 
very well. Namely we decompose the Hamiltonian into two parts H = HI + H,, and 
using the Trotter formula we put them on a checkerboard. We have 

2 = Tr( VI V,) L, 

V1(2) = n exp(-ArHn,n+1), 

(3) 

n :  odd (even) 

where A T  = p /  L and 

H n , n + l  = - J ( S i S : + l +  S Y n S ' , + , ) + J , S ~ S Z , + I + f D [ ( S ~ ) 2 + ( S ~ + 1 ) 2 ] .  

The local transition matrix V = exp(-ArHn,n+l) is a 9 x 9 matrix, given by (in the 
z-component diagonal representation) 

D, 0 
0 s1 

0 0  
0 RI 

v =  0 0 
0 0  
0 0  
0 0  

where we have introduced 
1 0 0  

0 0 0 0 0 0 0  
O R I O  0 0 0 0 
S O R O A O O  
o s l o o o o o  
R O T O R 0 0  

A O R O S O O  
O O O R I O S I O  
O O O O O O D ,  

O O O S 1 O R I O  

D, = exp[ -Ar ( D  + Jz)], 
SI =cosh(ArJ) exp(-ArD/2), 

R ,  = sinh(A7.J) exp(-A~D/2) ,  
S Z U 2  A + + L  A o + u 2  A-  l e  2e l e  , 

l e  2e l e  A =  U' ' + - L  'o+yZ A - ,  

T = U: eh+ + v i  eh-, 

R = u1 U, eh+ + v 1  v2 eA-. 

(4) 
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In the expression (51, we put 

A, = -A&{D - J ,  i. [ ( D  - J , ) * +  8 J 2 ] ” 2 } ,  

A o =  -AT(D -Jz), 

* 
0 0  

* 
0 0  

* 
1 -1 

* 
1 -1 

* 
1 -1 

* 
1 -1 

* 
1 -1 

* 
0 0  

* 
0 0  

* 
-1 1 

* 
-1  1 

* 
-1 1 

* 
-1 1 

* 
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* 
-1  1 

* 
0 0  

* 
0 0  

* 
1 -1 

* 
1 -1 

* 

* * * * * * * 
-1 1 - 1 - 1  1 1 - 1  1 - 1  0 0 0 0 

-1 1 - 1 - 1  1 1 - 1  1 - 1  0 0 0 0 
* * * * * * * 

* * * * * * * 
0 0 0 0 0 1 - 1  1 - 1  1 - 1  1 - 1  

* * * * * * * 
1 - 1  0 0 0 1 - 1  1 - 1  1 - 1  1 - 1  

* * * * * * * 
1 -1 0 1 -1 1 -1 1 -1 1 -1 1 -1 

* * * * * * * 
1 - 1  0 1 - 1  1 - 1  1 - 1  1 - 1  1 0  

* * * * * * * 
1 - 1  0 1 - 1  1 - 1  1 - 1  1 - 1  1 0  

* * * * * * * 
1 - 1  0 1 - 1  1 - 1  1 - 1  1 - 1  1 0  

* * * * * * * 
1 0 - 1  1 - 1  1 - 1  1 - 1  1 - 1  0 1 

* * * * * * * 
1 0  0 0 - 1  1 - 1  1 - 1  1 - 1  0 1 

* * * * * * * 
1 0  0 0 - 1  1 - 1  1 - 1  1 - 1  0 1 

* * * * * * * 
1 0 - 1  1 - 1  1 - 1  1 - 1  1 - 1  0 1 

* * * * * * * 
1 0 - 1  1 - 1  1 - 1  1 - 1  0 0 0 1 

* * * * * * * 
0 1 - 1  1 - 1  1 - 1  1 - 1  0 0 0 1 

0 1 - 1  1 - 1  1 - 1  1 - 1  1 - 1  1 0  

1 0  0 0 - 1  1 0  0 - 1  1 - 1  1 0  

1 0  0 0 - 1  1 0  0 - 1  1 - 1  0 1 

1 0 - 1  1 - 1  1 0  0 - 1  1 - 1  0 0 

1 0 - 1  1 - 1  0 1 0 - 1  1 - 1  0 0 

* * * * * * * 

* * * * * * * 

* * * * * * * 

* * * * * * * 

* * * * * * * 

* * * * * * * 
Figure 1. A part of a typical configuration for the case J = J,  = 2.0, D = 0.0. In this 
checkerboard pattern, each * part represents the interaction V. The number at each corner 
of a * is the value of the spin. The horizontal direction points to the spatial lattice, and 
the vertical one points to the imaginary-time axis. 
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- 1 ‘  

U, = J/[2J2+ (A-/AT)’]’’~,  u2 = u,A-/(JAT), 

u1 = J / [ 2 J 2 +  (A+/AT)~]’” ,  u2 = ulA+/(JA~).  

It should be noted that D,- R are all positive definite. 
Since the Hamiltonian (1) conserves the z component S’ of total spins, the Hilbert 

space is decomposed according to S’ = N, . . . , -N.  Because we are interested in the 
antiferromagnetic case ( J ,  3 0), we restrict our consideration to the subspace of S’ = 0 
in this paper. 

Now the MC simulation can be performed by a heat bath algorithm based on the 
transition probability derived from matrix (4). In figure 1 we show a typical configur- 
ation for the case of J = J ,  =2.0, D=O.O and A ~ = 0 . 2 .  Throughout this paper the 
results are obtained from the MC data of 1 0 0 0 0 ~ ~  sweeps after 5000 sweeps of 
thermalisation. The measurements on 10000 samples are divided into 200 sets of 50 
samples, and the usual calculation of the average and standard deviation is applied 
to them. The size of system simulated is N = 40, and the value of L is kept to 30 for 
the most part. Correspondingly the relative temperature is T /  J = = 0.083, which can 
be regarded as sufficiently low. 

0.5 t I C )  t 

R, 
10 20 

- 0 . 5 1  
id I 

I ibl 

%-+@--- 20 I l i i V V  lo / 

-1.01 

Figure 2. Longitudinal correlation fucntion of ordinary Heisenberg model (D = 0) for ( a )  
A=O.75, ( b )  A = l . O ,  (c) A = 1 . 2 5 ,  ( d )  A = 1 . 5  ( A = J , / J ) .  
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3. Results of Monte Carlo simulations 

3.1. Ordinary Heisenberg model ( D  = 0 )  

First let us discuss the case of the ordinary Heisenberg model. In figure 2 the correlation 
function p(Z)  = (SiSE+,) is shown for some A =  J , / J .  One can notice a qualitative 
difference between the behaviour for A >  1 and A S  1: we have a residual staggered 
magnetisation for A >  1, while the correlation function for A S  1 damps rapidly. We 
performed further simulations near A = 1 to get the detailed information. 

In figure 3 we show the staggered magnetisation M ,  for various A in the region 
A > 1. The curve obtained looks quite similar to the corresponding one for the spin-f 
case, which is given in figure 4 for comparison. It should be noted that there is no 

1.0 

Ms I 
I 

h 

Figure 4. Staggered magnetisation M ,  plotted against anisotropy A =  J z / J  for S = f  (com- 
pare with figure 3) .  
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indication of Haldane’s phase near A = 1. On the contrary, the behaviour near A = 1 
might be of essential singular type (-exp[-constant/(A - l)”*]), which is the case for 
S = 4. This behaviour is also expected in the exactly solvable X X Z  model (Sogo 1984) 
for arbitrary spin S. 

Now let us turn to the case of A S  1. In figure 5 we give the exponent x estimated 
from the data for some values of A in the region A S  1. In the above the least-squares 
fitting program (SALS) is used on the assumption that p (  I )  - (-l)’l-x. 

In our simulations the internal energy was measured along with the correlation 
function. In figure 6 is shown the internal energy for various A at the temperature 

3 .O 

2.0 

X 

1 .c 

0 0.5 1 .o 
A 

Figure 5. Exponent x of correlation function plotted against anisotropy A = J z / J .  

A 
0 1.0 2 .o 

Figure 6. Internal energy at T/ J = 0.083 plotted against anisotropy A = J z /  J,  
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-0.8 

2 -0.9 
Lu 

T /  J = 0.083. The full line is E /  NJ = A, which is the expectation value for the Niel 
state. As is expected, the internal energy curve approaches the Niel line for large A 
asymptotically. 

To close this subsection we show in figure 7 the change of the internal energy 
with temperature, from which we see that the specific heat (derivative of the internal 
energy) has a peak around T/ J - 1 .O. 
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. 

. 

T i  J 

"r 

-1 .o 

-1.1 

-1.2 

I . 

- 

1 1  - 

Figure 7. Internal energy of isotropic Heisenberg model ( A  = 1, D = 0) plotted against 
temperature. 

A:2.0 

I .  

1 .o 1.5 
OiJ 

Figure 8. Staggered magnetisation M, for A = 2.0 against single ion anisotropy D, 
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3.2. Efec t  of the single ion anisotropy ( D  # 0 )  

Now let us discuss the case of D # 0. From a naive consideration we can expect that 
the value of D controls the behaviour of the residual staggered magnetisation in the 
correlation ( S ~ S ~ + , ) :  when D exceeds a critical value DJA), which depends on A, the 
staggered magnetisation vanishes. In general the staggered magnetisation behaves near 
critical D, as M, - ( D ,  - DIY. 

In figure 8 the magnetisation M ,  is plotted against D for the case of A=2.0.  The 
behaviour is just as we expected. In figure 9 we give the exponent y estimated from 
the data for some values of A. 

Finally we can construct a phase diagram from the determined D,(A). Figure 10 
is the phase diagram obtained from our simulations. The right region is the phase 
with staggered magnetisation and gap, while the left region is gapless. The broken 
line in the figure represents a result of the mean field theory (S6lyan and Ziman 1984). 

To confirm whether the transition between singlet and planar phases exists, as the 
mean field theory says, or not, the measurement of the transverse correlation function 
(SLS;+,) is required. For this purpose some complicated calculations are needed, and 
will be studied in future work. 

- 

- 

- 

- 
t 

I 
0 0.5 1 .o 1.5 2.0 

A 

Figure 9. Exponent y of staggered magnetisation Ms,  defined by M ,  - (0,- D)’, for some 
values of A,  

4. Conclusions and discussions 

We performed Monte Carlo simulations of the anisotropic Heisenberg model with 
spin 1. The longitudinal correlation function and the internal energy are measured at 
various points in the antiferromagnetic region. From these data some exponents and 
the phase diagram are derived with good accuracy. 
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Figure 10. Phase diagram estimated from simulations. Open circles are the obtained critical 
Dc(A). The right side of the full line is the phase with staggered magnetisation and gap, 
and the left region is the gapless phase. The broken line is the result of the mean field 
theory. The line at D/ J = 4 separates the planar and singlet phases. 

One might suspect that there certainly exists a finite size effect. To check how large 
is this effect, we did simulations of the typical case A = 1.25 and D = 0 for N = 20, 30 
and 40. The result is given in figure 11, where the energy and correlation function 
p(10) are shown as representative examples. The effect is rather small and is masked 
in the error of measurement for N b 30. 

1.0 

- 
0 
r = 0.s 

L 
10 20 30 40 

N 
10 20 30 40 

N 

Figure 11. Finite size effect. Note that the size effect is very small for N a 30. 
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Although we did not focus on the relevance of our model to actual experiments, 
there should be some remarks on this point. Our model applies to the materials CsNiC1, 
and RbNiC13 ( A  = I ,  D = 0). For the full comparison with experiments, however, it is 
desirable to compute the dynamical form factors Sa6(q, U ) ,  which are the Fourier 
transforms of both longitudinal and transverse correlation functions. 

Although there is no essential difficulty in computing static correlations on the 
simulations, we need a new idea to compute the dynamical ones, as was discussed in 
Hirsch et a1 (1982). Recent microcanonical and Langevin equation approaches might 
give a hint to this problem. 
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